NASA TECHNICAL
REPORT

NASA TR R-164

THEORETICAL STUDIES OF

SUPERSONIC TWO-DIMENSIONAL AND
AXISYMMETRIC NONEQUILIBRIUM FLOW,
INCLUDING CALCULATIONS OF

FLOW THROUGH A NOZZLE

by James J. Der

Ames Research Center
Moffett Field, Calif.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION <« WASHINGTON, D. C.

LOAN COPY: RETU
ALWL (WL

FIRTLAND AFE, N

hhEg900

T

WN ‘gdv) AHVHEIT HO3L

I

e DECEMBER 1963



TECH LIBRARY KAFB, NM

L

bA3uy

THEORETICAL STUDIES OF SUPERSONIC TWO-DIMENSIONAL
AND AXISYMMETRIC NONEQUILIBRIUM FLOW, INCLUDING

CALCULATIONS OF FLOW THROUGH A NOZZLE
By James J. Der

Ames Research Center
Moffett Field, Calif.

and

Stanford University

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sale by the Office of Technical Services, Department of Commerce,
Washington, D.C. 20230 -- Price $1.50



TABLE OF CONTENTS

LIST OF FIGURES . . . « v v v v v 4 v o v o o o o o o « o «

SUMMARY . . . & v v v v v v e e e e e .

CHAPTER I - INTRODUCTION . . . . . . .

CHAPTER IT - FLOW EQUATIONS

CHAPTER IIT - SOME MATHEMATICAL PROPERTIES OF THE NONEQUILIBRTUM-FLOW
EQUATTONS e e e e e e e e e e e e e e e e e e e
Direct Nozzle Problem
Inverse Nozzle Problem .

CHAPTER IV - AXTSYMMETRIC NONEQUILIBRIUM FLOW THROUGH A NOZZLE
Gas Model

Nozzle Model .

APPENDIX A - THERMODYNAMIC AND CHEMICAL-KINETIC PROPERTIES OF A SIMPLIFIED

ATR MODEL .

APPENDIX B - PRINCIPAL SYMBOLS

REFERENCES

Page

1i

L7
17
20

20

.21

36

. k5
. b7



e

V-6.

Iv-y.

TVv-8.

TV-O.

Iv-10.

Iv-11.

Iv-12.

LIST OF FIGURES

Characteristic lines for equations (TIT-1) . . . . . . . . .
Domain of determinacy for equations (III-la, B) . . . . . « . . .
Domain of terminacy for equations (III—lc, dy . . . e e e .
Data curves with overdeterminacy . . . + « & & o « « ¢ &« « « + .
Direct nozzle problem . . . . o ¢ & ¢ ¢ b i 0 s e s s e e e e e
Inverse nozzle problem . . . . . . . . . 0 0 4 . 0 a0 . . .

Regions of flow In & typical high-speed nozzle . . . .
Nozzle used in flow computations . . . . . . . . . . .
Characteristics net Ffor nonequilibrium-flow computations

Computation net for points on the nozzle center line, nozzle wall,
and In the interior . . . . . . . . . .« . o . . .

Degree of dissociation along the nozzle center line in the
transition region for various degrees of nonequilibrium and

various assumed nonequilibrium starting positions . . . . . .

Characteristic reaction length in the transition region of the
NOZZIE « v 4 v v 6 6 e e h e e e e e e e e e e e e e e e e

Degree of dissociation along the nozzle center line Tor various
degrees of nonequilibrium . . . . .+ ¢ ¢ o o v s 4 s e e e ..

Veloclty along the nozzle center line for equilibrium and
nonequilibrium flow . . . . . .« ¢ ¢ . . . 0 . 0 o0 e e e . .

Pressure along the nozzle center line at various degrees of
nonequilibrium . . « .« .« + « 4 o 0 4 e 0 e e e e e .

Temperature along the nozzle center line for various degrees
2f nonequilibrium . . . . . .« « ¢ « . o . . . . .

Frozen Mach number along the nozzle center line for wvarious
degrees of nonequilibrimm . . . . . . . . o L . o . . ... ..

Variation of degree of dissociation across the nozzle-exit plane

IV-13.- Velocity distribution across the nozzle-exit plane . .

=

Page

12




Figure

IV-1k.
Iv-15.

IV-16.

A-2.

A-3.

A,

Pressure distribution across the nozzle-exit plane
Temperature distribution across the nozzle-exit plane
Frozen Mach number digtribution across the nozzle-exit plane
Equilibrium degree of dissociation versus temperature for

pressure = 0.01, 1.0, and 100 atmospheres (simplified air
model) . . . .. . .

1l

Equilibrium speed of sound versus temperature for pressure
1.0, and 100 atmospheres (aeo = ag at standard condition
3.320%10%* cm/sec) .. ..

I

Ratio of frozen to equilibrium sonic speed for the simplified
air model and for pure oxygen

Normalized characteristic reaction length for the simplified
air model and for pure oxygen

Page
3k
34
3k

40

41

Lo

L3

iii



NATIONAL AERCNAUTICS AND SPACE ADMINISTRATTION

TECHNICAL REPORT R-164

THEORETICAL STUDIES OF SUPERSONIC TWO-DIMENSIONAL AND
AXISYMMETRIC NONEQUILIBRIUM FLOW, INCLUDING
CALCULATIONS OF FLOW THROUGH A NOZZLE®'

By James J. Der
SUMMARY

Chemical and vibrational nonequilibrium phenomena in steady two-dimensional
and axisymmetric inviscid flow fields are studied by the analysis of flow past
curved boundaries. The study consists of three parts: (1) formulation of the
governing equations, (2) study of the general features of nonequilibrium flow by
consideration of some mathematical properties of the nonlinear flow equations,
and (3) analysis of axisymmetric flow of dissociated air through a nozzle by
means of numerical computations.

In the formulation of the governing equations, possible alternative choices
of the state variables to be used and their relative advantages are considered.
The entropy is not found to be a convenient variable in nonequilibrium flow and
is therefore not used. The system of nonequilibrium flow equations 1s two orders
higher than the corresponding classical (equilibrium or frozen) system.

General features of the nonequilibrium flow are studied by examination of
the mathematical propertieg of the nonlinear flow equations. In addition to the
two differential compatibility equations along the Mach lines, as exist in clas-
sical supersonic flow, two more differential compatibility equations are neces-
sary along the streamlines. The domain of determinacy of the nonequilibrium flow
is the same as for classical flow, namely, the area bounded by the outermost Mach
lines from a data curve. If a data curve is crossed more than once by any char-
acterigtic, the amount of data that can be prescribed is restricted. The
implications of such restrictions in nozzle problems are discussed.

Finally, an axisymmetric nonequilibrium flow of air through a supersonic
nozzle is analyzed by means of numerical computations. The coupling effects
between nonuniformity (across a nozzle section) and nonequilibrium, not taken
into account in the quasi-one-dimensional flow approximation, are revealed by
the present analysis. 7 -

1This report is based on a dissertation submitted to the Department of
Aeronautics and Astronautics, Stanford University, in partial fulfillment of the
requirements for the Ph.D. degree. The work arose out of the author's participa-
tion in a graduate research seminar supported at Stanford University by a grant
from the National Science Foundation.




CHAPTER I
INTRODUCTION

The present study is concerned with chemical and vibrational nonequilibrium®

phenomena in two-dimensional and axlisymmetric flow.

Studies of nonequilibrium flow have been concerned mainly with one-
dimensional (refs. 1 through 3) and quasi-one-dimensional flow (refs. 4
through 11) and with two-dimensional and axisymmetric flow past bodies of simple
shape (refs. 12 through 17).2 A general formlation of the equations for non-
equilibrium flow has been presented by Kirkwood and Wood (ref. 18) and by others .
(e.g., refs. 19 and 20). A method for the numerical computation of the quasi-
one-dimensional flow of a general gas mixture has been formulated recently by
Emanuel and Vincenti (ref. 8).

In the present work, the more general features of two-dimensional and
axisymmetric nonequilibrium flow are studied by consideration of flow past curved
boundaries. For simplicity the study is limited to the cases of supersonic flow
with a single nonequilibrium process. Part of this objective was achieved in
reference 21, which, however, was concerned only with linearized flow past a
single wall.

In chapter IT, the inviscid flow equations are given. Alternative forms of
the governing equations and their possible advantages are discussed. The
entropy, a convenient quantity in classical (frozen or equilibrium) gas dynamics,
has no particular utility in the present analysis as a nonequ.l.Llibrium variable.
The constancy of a nonequilibrium parameter (other flow quantities varying)
gsignifies the freezing of the corresponding nonequilibrium process. On the other
hand, the entropy i1s constant along a streamline when the flow is either in an
equilibrium or a frozen condition. The entropy is, therefore, not used in the
formulation of the flow equations in the present work. The system of differen-
tial equations for nonequilibrium flows is seen to be two orders higher than the
corresponding system for classical gas flows.

In chapter IIT, the general features of steady two-dimensional and
axisymmetric nonequilibrium flow are studied by examination of some mathematical
properties of the nonlinear flow equations. As in the case of classical gas
dynamics, there are two differential compatibility relations along characteris-
tics having the direction of the frozen Mach lines. In addition, however, there
are two more differential compatibility relations necessary along the character-
istic in the streamline direction. The domain of determinacy of the nonequilib-
rium flow is the same as that of the frozen flow, namely, the region bounded by
the outermost frozen Mach lines from a data curve.

ZWhen a nonequilibrium variable (such as a degree of dissociation) is in
equilibrium with the other local thermodynamic state variables, the flow is said
to be in equilibrium with respect to the corresponding nonequilibrium process;
otherwise the flow is said to be in nonequilibrium condition. When a nonequilib-
rium variable becomes fixed, the flow is said to be frozen with respect to the
corresponding nonequilibrium process.

SThe references cited here constitute a representative rather than an
exhaustive list of the numerous published works in this field.
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For any system of hyperbolic differential equations, if a data curve is
crossed by any characteristic line only once, full data can be posed on the data
curve. If a data curve is crossed by any characteristic twice, then only partial
initial values can be prescribed. For the system of equations used herein, the
prescription of initial values of the pressure and stream angle will be
restricted if the data curve is crossed twice by one of the frozen Mach lines
(which is true also for the classical flow). On the other hand, prescription of
the initial values of the velocity and the degree of dissociation will be
restricted if the data curve is crossed twice by the streamlines. Nonequilibrium
flow has more compatibility relations than the classical flow and hence has more
restrictions on the prescription of initial values. These additional restric-
tions prevent us from prescribing a completely uniform exit flow in the inverse
nozzle problem (i.e. , computation of the contour of a nozzle for given 1n1t1al
center line, and exit conditions).

Finally, a specific nonlinear, nonequilibrium flow problem is studied in
chapter IV, where the dissociative nonequilibrium flow of air through a given
nozzle is analyzed. The flow of real air is approximated by a flow of a mixture
of dissociating oxygen and nondissociating nitrogen. The molecular vibration is
assumed to be in equilibrium. The assumption of only a single nonequilibrium
process simplifies the analysis considerably. For the present nozzle problem
(temperature less than 8000° K, pressure less than 300 atmospheres), however,
such approximation is valid since nitrogen dissociation is actually small. Four
cases for the same reservoir conditions were computed numerically by means of an
IBM 7090 digital computer. These include one equilibrium flow and three cases of
nonequilibrium flow with varying degrees of nonequilibrium as dictated by the
magnitude of the effective characteristic reaction length.

It is found that quasi-one-dimensional flow computations give qualitatively
correct results. On the other hand, the coupling effects between nonuniformity
(at a nozzle cross section) and nonequilibrium, not taken into account in quasi-
one-dimensional flow, are revealed in the present analysis. At any cross sec-
tion, the flow near the nozzle wall has traveled a longer distance than the flow
near the nozzle center. Furthermore, the flow near the center line freezes
sooner. Hence, near the center line the flow has higher values of the degree of
dissociation. The nonuniformity at the nozzle exit worsens as the degree of non-
equilibrium increases. The exit velocity changes only minutely and remains
nearly uniform as the flow deviates from the equilibrium condition. Other flow
variables, including pressure, temperature, and Mach number, change significantly
both in magnitude and uniformity at the exit as the flow tends toward the frozen
condition. In general, therefore, one can expect little effect on velocity due
to nonequilibrium, but significant effects on Mach number and other variables.
Also, since one cannot impose complete uniformity of all flow variables at the
nozzle exit, prescribing uniform exit pressure in designing a nozzle would lead
to more uniform flow over-all than prescribing uniform exit velocity.

The thermodynamic and chemical kinetic properties of the simplified air
model used in the numerical analysis are listed in appendix A.

The author is indebted to Professor Walter G. Vincenti of Stanford
University for his guidance throughout the course of the research and to
Dr. Max. A. Heaslet of the National Aeronautics and Space Administration, Ames



Research Center, for his timely encouragement and assistance. Professor
M. D. Van Dyke provided valuable criticism and encouragement. Finally, thanks

are due to Professor I-Dee Chang for reading the manuscript and furnishing
important criticism and assilstance.



CHAPTER IT

FLOW EQUATIONS

The governing equations of flow of a reacting gas in the absence of
transport phenomena and body forces are the familiar conservation equations plus
the equation of state and the rate equations. The rate equations, which are not
used in classical (equilibrium or frozen) gas dynamics, are needed here because
the more general state equation now contains additional nonequilibrium param-
eters, for example, the various molecular vibrational energies and the degree of
dissociation and ionization of the various constituents. The equations for flow
with n nonequilibrium parameters are, therefore (see e.g., ref. 22)

Mass Do, ,givw=0 (II-1a)
Dt
Dw -
Momentum Pt grad p = O (IT-1b)
Dh Dp
Ener = - = =0 IT-1c
gy P T oo ( )
State h=h{p, p, qys -+ » Q) (I1-14)
Day .
Rate -0 = wilp, 05 Qs =v- 5 Q) i=1, ... , n
(I1-1e)

where D/Dt denotes the Rulerian derivative; p, %, p, h are the density,
velocity, pressure, and enthalpy of the medium; g; denotes the vibrational
energy and/or degree of dissociation and ionization; and w3 gives the net rate
of increase of g; as a function of the local thermochemical state.

When the flowing gas is in equilibrium, the values of q; are functions
gsolely of the local pressure and density, hence the enthalpy becomes a function
solely of p and p, that is

he = hip, o, q_ie(pJ p)] = he(p: o)

When the gas is in a frozen condition, each a has a certain fixed value, and
h 1is again a function solely of p and p, that is,

hf = h[P’ 0, q‘i = Constant] = hf(P) D)

Note that a perfect gas has q5 = qie(p, p) = constant; hence a perfect gas is,
by definition, always in the frozen and equilibrium conditions simultaneously.



It is of interest to note the minimum number of first-order differential
equations required to determine a flow field. We consider, for simplicity,
steady two-dimensional and axisymmetric flow with only one mode of nonequilib-
rium. Since the state equation is not in differential form, it can be used to
eliminate one dependent variable from the differential equations. We shall
choose to eliminate p. This can be done by differentiating equation (I1-14)
and using equations (IT-1lc) and (IT-le) together with the identity

h
ap” = —2 (11-2)

for the frozen speed of sound (see appendix A), thus finding an expression for
Dp/Dt in terms of Dp/Dt and in/Dt. By substituting this expression into equa-
tion (II-la), we obtain a modified mass equation. Furthermore, the energy equa-
tion can be modified by combining it with the momentum equation, yielding a form
more convenient for our purpose. A complete set of differential equations
governing nonequilibrium flow is thus obtained as

h
- a;
ap Z gi + o div W - E: __i wi =0 (I1-32)
—

o %% + grad p = O (TT-3b)

2
5 é% <£ N %?> i, %% -0 (II-3¢)

Dgq.

1
5o w1 =0 (11-3a)

The coefficients are related to the dependent variables, p, %, h, qs-

For steady flow, equation (II -3c) can be integrated immediately, yielding an
algebraic relation statlng that the sum h + w2/2 is constant along each stream-
line. We further restrict our study to two-dimensional axisymmetric flow, with
only one nonequilibrium parameter. Equations (I1-3) then become, in intrinsic
coordinates,

Mg 2 gp + pw <éE + W —%> <} - 1 owe sin 0 - 2 WQ>
S

pW'gg + SB =0 (IT-4p)
S

(I1-La)

1§
O




299 L9 _ g (II-ke)
ds on
99 _w .o (II-La)
ds W

where Mp = w/ar; s and n are the streamwise and normal coordinates; 6 1is the
streamline angle; v 1is 1 for planar flow and 2 for axisymmetric flow; and r 1is
the radial distance from the center line of axial symmetry.

The minimum number of first-order differential equations governing a steady,
nonequilibrium, two-dimensional or axisymmetric flow is thus seen to be four.

In the classical limits of either equilibrium or frozen flow, two more
differential equations can be eliminated. This can be done by introducing the

specific entropy S, which is related to w; by the relation

T D_S = Z Z5W5 (II_S)

Dt

where the 2z; are related to the chemical potential and the vibrational energies
(see, e.g., ref. 18). (The specific entropy is denoted here by S to avoid con-
fusion with the streamwise coordinate s.) The rate of change of entropy DS/Dt
1s zero when the flow is frozen (w; = 0) or in equilibrium (] zjwi = 0). Fur-
thermore, since the state of the medium in either limit is determined by only two
thermodynamic variables, we can take one of these to be the entropy, which is,
from equation (II-5), constant along streamlines. The two relations, h = h(p, 8)
and S = constant along a streamline, can then be used to replace two of the dif-
ferential equations, equations (II-4b) and (IT-kd). In the frozen and equilib-
rium limits, therefore, the order of the system of flow equations is 2. This 1s
true regardless of whether the flow is rotational or irrotational.

The governing differential flow equations can be written in various
alternative forms. For special purposes a particular form of the equations may
have advantages over the others. The differences among various forms of the
equations arise mostly from the choice of the state equation. Choice of equa-
tion (II-1d) is natural because it relates h, which arises naturally in the
energy equation for fluid flow, to p and p, which appear in the mass and
momentum equations. Equations (II-1) are convenient for analytical purposes.

A perhaps more familiar way of expressing the state relationship is to
relate h, p, and p by means of the two equations

h

n(p, T, q;) (I1-63)

= p(p, T, a4) (IT-6D)

Lo}
I

7



with the temperature T as a parametric quantity. These two equations are
called, respectively, the caloric and thermal equations of state. For numerical
computations, equations (IT-6) are often convenient to use because the tempera-
ture usually appears as a natural variable in the thermodynamic and kinetic
relations for real gases, such as air (see appendix A).

The entropy, useful in classical gas dynamics, especially when the flow is
homoentropic, is not nearly so convenient in nonequilibrium flow since here
entropy is not constant along streamlines. On the other hand, the constancy of
the gy (with other flow quantities varying) signifies that the flow is in the
frozen condition. Furthermore, the derivative of entropy in equation (IT-5) con-
tains 2z; and wi, and in some conditions both of these become indeterminate. The
use of entropy, therefore, may affect the stability of the numerical integration
process. If one needs to examine the variation of entropy, it i1s preferable to
compute it from equation (IT-5) after the flow has been found in terms of other
variables.



CHAPTER IIT

SOME MATHEMATICAT, PROPERTIES OF THE NONEQUILIBRIUM-FLOW EQUATIONS

We now consider the application of the flow equations (egs. II-4) developed
in the last chapter to problems of fluid flow in nonequilibrium condition. These
equations are quasi-linear? with complicated coefficients. Practical solutions
to such equations can be obtained, except in special cases, only by numerical
methods. We can study some of the general characteristics of nonequilibrium
flow, however, by examining a few mathematical properties of the nonequilibrium
flow equations and comparing them with those of the classical flow equations.

For simplicity we restrict our study to cases of only one nonequilibrium
process since the extension to multiprocess cases introduces no additional dif-
ficulties. Again, we study only steady two-dimensional or axisymmetric flow.
Supersonic flow will be dealt with mostly, although some of the discussion
applies to more general speed regimes. After some general discussion of the
mathematical properties, we apply the results to nozzle problems with regard to
the posing of initial and boundary values. Strong discontinuities such as shock
waves and slip lines will not be considered.

Some mathematical questions of special interest are the following:

1. What is the minimum number of dependent variables that determine the
flow field?

2. What are the characteristics?

3. What must be continuous, and what can be discontinuous, across the
characteristics?

4. What is the domain of determinacy?

5. How can the initial wvalues be prescribed?

6. What can be said about the existence and uniqueness of the solution?

We may try to study these questions in terms of either a single nth order
differential equation or a system of n first-order equations. We choose the

latter because, as pointed out by Courant (ref. 23):

1. A higher order differential equation can be rewritten as a system of
first-order equations, but the reverse is not true in general.

2. It is clearer to speak of the "fundamental" flow quantities, such as

velocity and pressure, than of some relatively remote function of the flow
variables, such as the stream function.

4A quasi-linear differential equation is linear in its highest derivatives.



3. The gas-dynamic equations can be written readily as a system of first-
order equations.

The minimum number of dependent varlables that determine the flow field is,
of course, the same as the minimum number of differential equations. As shown
in chapter II, the minimum number of differential equations in the present case
is four. The dependent variables selected are p, 6, w, and ¢, but any
appropriate function of these variables could also be used.

The characteristics of a system of differential equations can be defined in
various ways. The definition used by von Mises (ref. 2h) is as follows:

"Curves along which analytically different solutions of a
differential equation or a system of such equations can be patched
together are called characteristics of the equation or system."

Here patching means the solutions on both sides of the curve are equal. Charac-
teristics are thus curves across which the solutions themselves must be contin-
uous but the normal derivatives of any order can be discontinuous. This type of
discontinuity is called a weak discontinuity.

An equivalent definition of the characteristics is that along a characteris-
tic certalin partial derivatives of the equations group together in such a manner
that they form a differential equation containing only ordinary derivatives in
the direction of the characteristic. The characteristics and compatibility
relations for the nonequilibrium-flow equations can readily be obtained by using
this last definition. The direction along which an ordinary differential equa-
tion is formed is then the direction of a characteristic. The ordinary differen-
tial equation itself provides the compatibility relation corresponding to this
characteristic. The compatibility relations are, in fact, the original differen-
tial equations written in characteristic form. The order of the system remains
unchanged. Thus, in the present case we look for four compatibility relations.

Equations (II-Ub) and (IT-44) are already in characteristic form along the
streamlines. After elimination of the derivative of w by means of equa-
tion (II-Ub), the partial derivatives in equations (II-la) and (II-ke) can be
grouped in such a manner that these two equations form a set of two ordinary
differential equations in terms of p and 6 along the two frozen Mach lines.
Briefly, these equations can be obtained as follows: If we eliminate 5W/6s by
the use of equation (II-LYb), equation (II-La) becomes

(Mf2_1)§12+pw25_9+<V_:_1pw251n9-.h_qwu>=o
Js on r hp

The total differentials of p and 6 in the 1 direction (defined by the slope
dn/ds of 1) can be written as

ap = P gs + P 4y
ds dn

10



and

a6 = ég ds + éﬁ dn

ds dn

Solving these equations for Op/ds and 38/dn in terms of the directional deriv-
atives dp/ds and de/dnJ substituting into the foregoing equation, and noting
that pw236/ds = -Op/dn (from eq. (II-kc)), we have

. - h
Bf2 d_p + DWZ _d_e. + <_(_1£ - sz _d_l’l.> 6__:9. + <1/__l_ sz sin 8 - -9 ww> =0
s ds/ on r hg

If we choose dn/ds = #1/Bp, then the term containing the partial derivative
ap/én vanishes, and we thus obtain two ordinary differential equations along
1, and 1o, that is, along

(@) Y or i Mr
ds 1, Br ds Bf
and
@r_l) L . G Mp
ds o Br ds Be

In terms of 13, 1z, therefore, we have

h
Be dp * pw2 A6 + <}M“rl ow2 sin 6 - M_g; ww>‘dzl,2 =0 (III-1a,b)
T £hp

along ol tan(g + u)

and

Il
O

ow dw + dp (IIT-1c)

o

along & - tan 0
dx

I
O

wdq - w ds (I11-14)

11



where Bf = /Mfa - 1; 17 and 1z are the distances along the left-running and

right-running Mach lines, respectively (fig. ITI-1); r is the radial distance
from the line of symmetry, which is also the =x-axis; and p 1s the Mach angle,
related to Mp by the relation p = sin=*(1/Mg).

|

Mach line (left running)

Streamline

Mach line (right running)

— X

Figure III-1.- Characteristic lines for equations (III-1).

There are other, alternative forms of the compatibility relations. They can
be obtained by the use of different variables. In general, the number of com-
patibility relations needed is the same as the number of original differential
equations. Normally, there are two along the slant characteristics, or Mach
lines, and the remainder along the streamlines. In selecting a particular set of
compatibility relations, or variables, one should take into account the manner in
which the problem is prescribed.

We can now deduce from equations (III-1) the answers to the questions posed
earlier. First of all, p, w, 8, g constitute the solution to the system of
equations, and hence these flow quantities must be continuous everywhere in the
domain of weak discontinuities (i.e., in a flow field free of shock waves and
slip lines). Equation (III-la) is the characteristic equation for p and 6
along the left-running Mach line, whereas equation (ITI-1b) is the characteristic
equation for p and 8 along the right-running Mach line. Across any Mach line,
therefore, the normal derivatives of p and 6 can be discontinuous. ZEqua-
tion (III-lc), on the other hand, is the characteristic equation for p and w
along the streamlines. It follows that the normal derivatives of p and w can
be discontinuous across a streamline. Similarly, due to equation (ITT-1d), the
normal derivative of g can be discontinuous across a streamline.

12



Note that, alternatively, p instead of w could have been eliminated in
forming equations (III-la,b). The variable w, therefore, can have a weak dis-
continuity (normal derivative discontinuous) across the Mach lines also. The
quantity 6, however, cannot have a weak discontinuity across a streamline. This
can be deduced by the use of equation (II-4a) as follows: Since all of the
coefficients and, in general, Jdp/ds and dw/ds are continuous across the stream-
line, it follows that 06/0n must be continuous across a streamline. Similarly,
that the quantity g cannot have a weak discontinuity across a Mach line can be
deduced from the fact that aq/as is always continuous (since w is always
continuous) and 3q/dl;,2 are in general continuous (since q 1s in general
continuous). Summarizing:

p, w, 6 can have weak discontinuities across a Mach line, while
P, W, g can have weak discontinuities across a streamline. Weak
discontinuities cannot occur in g across Mach lines nor in @6
across streamlines. The actual occurrence of any such disconti-
nuity, of course, is dependent on the initial conditions.

From the point of view of analysis, the characteristic equations have two
properties of significance. One is that they are ordinary differential equations
along the characteristic lines, and hence enable us to use a relatively well
developed numerical integration scheme. (This scheme is discussed in chap-
ter IV.) The other is that the variation of the flow quantities along the char-
acteristics cannot be arbitrary but is restricted by the relationships fixed by
the characteristic equations. These restrictions limit the freedom with which
initial values of p, W, 8, q can be prescribed. The nonequilibrium flow
requires a larger number of characteristic equations than the clagsical flow and
hence has more restrictions. We can more readily visualize the problem of posing
the initial conditions after the domain of determinacy is discussed.

The theory of characteristics has been studied extensively for linear
equations. The results of these studies can be extended by successive approxi-
mations to quasi-linear equations. Here, we are specifically interested in the
domain of determinacy. Consider figure III-2 where initial data are prescribed

~
~,

---------- Characteristics

Figure III-2.- Domain of determinacy for equations (III-la, b).

13



on the data curve AB. By data curve we mean a segment of a curve along which
the initial values of the dependent variables of a system of differential equa-
tions are prescribed. If the initial values of all the dependent variables of
the system of equations are prescribed, this segment is said to have full data,
otherwise the data curve 1s said to have partial data. A data curve may or may
not constitute the data curve of the entire problem (flow field in the present
case); and the system of equations may be either the complete system, that is,
all of equations (III-1), or a subsystem of it, for example, equations (III-1la,b).

If the subsystem of equations (III-la,b) were linear, the domain of
determinacy, with full data of this subsystem prescribed on AB, is the area
ACBD bounded by the outermost slant characteristics (frozen Mach lines) AC, BC,
AD, and BD.

For our equation, which is quasi-linear instead of strictly linear, we can
apply the iterative procedure of Schauder (ref. 23, p. 476) to compute the flow
guantities to any desired accuracy in the small region A'B'C', where A'C' and
B'C' are characteristics. By continuing the process over the full length of
AB, we can determine the flow quantities in the region AA"B"B in the near
neighborhood of AB. We thus obtain a new data line A'"B". By continuing the
process toward C and also toward D, we can determine the entire region ACBD
bounded by the outermost characteristics. For the nonlinear equations, of
course, the location of the characteristics is not known in advance, but must be
computed successively. According to reference 23 (p. L466), the above iterative
solution converges and is unique, and the solution can be extended to a finite
domain containing weak discontinuities. Hence, the solution to the gquasi-linear
equations exists and is unique in domain ACBD.

In our system of equations, we have not only slant characteristics, that is,
the Mach lines, but also the streamwise characteristics defined by the stream-
lines. If equations (ITI-1lc,d) were linear, the domain of determinacy of each of
these subsystems (eq. IIT-lc, eq. ITI-1d) would be an infinite strip bounded on
the sides by the outermost streamlines passing through the initial data line AB

(fig. TII-3).

Streamline

Data line-""

Streamline

Figure IIT-3.- Domain of determinacy for equations (III-lc, 4).
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A1l of the subsystems (eqs. IIT-la,b; III-lc; III-1d) are, of course,
coupled. For example, the coefficients for eguations (IIT-la,b) are functions
not only of p and 6 %but also of w and q. Equation (III-lc) likewise has a
coefficient that is a function of p, w, and g, and, in addition, the quantity
p appearing in the differential is to be found from the subsystem equa-
tions (III-la,b). The domain of determinacy of the complete system of equa-
tions (III—l) is, therefore, the common domain of determinacy of all the sub-
systems. Thus, the domain of determinacy of the complete system is the same as
that for subsystem equations (III-la,b), that is, the region bounded by the
outermost slant characteristics.

In posing the initial conditions we must take care that no region is
overdetermined. In specifying the initial values of p and 6, for example, we
mist inquire whether the data curve i1s crossed more than once by any Mach line
(since the Mach lines are the characteristics for the subsystem equa-
tions (III-la,b)). To see this we refer to figure ITI-4. The segments AB, BBq,
and BB> are data curves. If the initial values of p and 6 (as well as W
and q) are prescribed on AB, then, since BB; lies inside the domain of deter-
minacy of AB, the values of p and 6 on BB, are determined. Hence, neither p
nor 8 can be prescribed on BB,. In other words, if a curve (e.g., ABBy) is

B3

_.-7Mach lines

~-Streamlineg------ /

Figure ITI-4.- Data curves with overdeterminacy.
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crossed twice by both the left-running and right-running Mach lines, then one
segment of it (BB;) lies inside the domain of determinacy (for AB) of the sub-
system equations (III—la,b). Consequently, the full data of this subsystem
(values of p and 6) can be prescribed only on one segment (AB). Posing partial
data on both segments (AB and BB;) is possible, however. For example, if D
only is prescribed on AB and 6 only is prescribed on BB; (and also on
B.Bs), then, p for BB; and O for AB are determined by equations (III—la,b).

Another situation that can arise is illustrated as follows: The curve
A-BBy is crossed twice by only one of the two families of Mach lines. The data
prescription on such a curve 1s less restrictive than that on a curve of the
type ABB;. If full data for the subsystem equations (III-la,b) (both p and 8)
are prescribed on AsB, then the values of 7p and 6 on BBy are related by equa-
tion (III-1b). Consequently, either p or 6, but not both, can be prescribed
on BBs.

In posing data for w and g, we need to note whether the data curve for
w or q 1is crossed more than once by a streamline. In figure III-4, A;BB; 1is
crossed twice by the streamlines. If the initial value of w 1s prescribed on
A:B then the value of w on BB; 1s related to that on A;B by equa-
tion (III-lc). The initial value of w (and similarly gq) can be prescribed
on either A.B or BB; but not on both.

The foregoing are the restrictions imposed by the characteristic relation
as mentioned earlier in this chapter. We can summarize these restrictions as
follows (referring to fig. ITI-L):

I. If a data line is crossed twice by
A. both families of the Mach lines (say first segment AB, then
segment BB;), then the initial value of p and 6 can be posed
in one of two ways:
1. Prescribe p and 6 on AB or BB, only.

2. Prescribe p on AB and 6 on BB; or vice versa.

B. only one family of Mach lines, then both p and 6 can be
prescribed on one of the segments and either p or 6 on the
other segment.

II. If a data line is crossed by the streamlines twice (say first A.B,
then BB;), then Ww can be prescribed on one of the two segments
only. The same is true for q.

We illustrate these points by the following two examples.
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Direct Nozzle Problem

In the direct nozzle problem, for which calculations are made in the next
chapter, initial data can be prescribed on AB (fig. III-5). For our system,

C

Nozzle wall

>>Mach lines

_ -4

A Nozzle center line D

Figure III-5.- Direct nozzle problem.

the data that can be prescribed on this line are p, w, 8, g¢. The values of 6
are also prescribed on AD where 6 = O and BC where 0 = 6(x). Curve BAD is
crossed twice by only the right-running Mach lines and therefore p and 6 can be
prescribed on AB and 6 alone can be prescribed on AD. Similarly, 6 alone
can be prescribed on BC. Curve ABCD 1is crossed by the streamlines twice;
hence W and g can be prescribed either on AB or CD, but not both.

The posing of initial values in the direct nozzle problem is thus straight-
forward even for nonequilibrium flow. The inverse nozzle problem, on the other
hand, is more deceptive.

Inverse Nozzle Problem

In the inverse nozzle problem, usually the initial wvalues are given in the
throat region; certain desired exit and center-line conditions are also
prescribed. The problem is to find the nozzle contour that gives these
conditions.
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Suppose we prescribe the initial values of p, 6, w, ¢ on AB (fig. III-6)
which is a curve crossed only once by any characteristic. The value of 0 = 0 is

C

Streamline __comm —

—

_.-~Mach lines

~——
-~

\ .
Nozzle center line

Figure III-6.- Inverse nozzle problem.

prescribed on AD by the definition of the nozzle center line. On the center
line, therefore, we can prescribe p only on A'D' since both BAA' and D'DC
are crossed twice by a family of the slant characteristics. On CD, which is a
curve crossed also only once by any characteristic, the values of p and 6 can
be prescribed; but w and g cannot be prescribed on CD because ABCD is
crossed twice by the streamlines and the initial values of w and g are already
prescribed on AB. Summarizing, we can prescribe all of the flow quantities

p, 6, w, ¢ on AB; 6 on AD; p on A'D'; and p, 6 on CD. Alternatively, A'B and CDf
can be used as data lines in place of BAA' and CDD', respectively. Then all of
the flow quantities p, 6, w, g can be prescribed on A'B, and p and 6 can be
prescribed on CD'.

In nozzle design it is usually desired that the flow at the exit be uniform.
If CD in figure ITI-6 is perpendicular to the nozzle center line, we can let CD
represent the exit plane. To prescribe that the flow be parallel on the exit
plane, we let 6 = 0 on CD. To have completely uniform flow we would further
require that p, w, g Dbe constant along CD. However, as previously concluded,
we can prescribe only p and 0 on CD. We can therefore have only a parallel flow
on the exit plane with p uniform, with no assurance that w and g will also be
uniform. Alternatively, we could, of course, prescribe w and g as uniform on
CD instead of having given values on AB. Unfortunately, however, prescribing
w and g on CD may dictate unrealistic conditions at the entrance AB of the
nozzle (the same is true, of course, for the direct nozzle problem).
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For the design of a nozzle with the flow either frozen or in equilibrium,
the above dilemma does not occur because in these cases the specification that 6
be zero and p uniform on CD leads automatically to uniformity of all other
flow quantities on CD.

Finally, we recall that w can exchange roles with p in the formulation
of the characteristic equations. We can therefore alternatively prescribe w
instead of p to be uniform on CD (¢ being unspecified in both cases). The
results of chapter IV will show, however, that w 1is nearly uniform anyway for
a reasonably shaped nozzle. As a practical matter, therefore, the prescription
of uniform p rather than w on the exit is to be preferred.
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CHAPTER IV

AXTSYMMETRIC NONEQUILIBRIUM FLOW THROUGH A NOZZLE

We now study the flow of air through a high-speed nozzle where the air is
out of chemical equilibrium. Specifically, we study the physical phenomena
associated with dissociation nonequilibrium when the flow is not uniform across
each section of the nozzle. We can thus examine the interrelated effects of

nonequilibrium and nonuniformity.

A typical nozzle is sketched in figure IV-1l. To have significant effects
of nonequilibrium, the air in the reservoilr should be substantially dissocilated,
which means that the reservoir temperature must be high. This is usually the
condition in a shock tunnel or spark-heated tunnel.

Nonequih brium

Throat

Nozzle center line

Figure IV-1.- Regions of flow in a typical high-speed nozzle.

In the region near the reservoir the high temperature of the alr gives it a
small relaxation time: In view of its small velocity, the air thus has an
extremely short relaxation length here. In this region, therefore, the flow is
in many cases in equilibrium. As the air approaches the throat the relaxation
time greatly increases due to the dropping of the temperature. Also, the speed
rapidly increases from subsonic toward supersonic values. Often, therefore, the
relaxation length becomes moderate in the vicinity of the throat, and, if the
relaxation length becomes moderate before the dissociated atoms have recombined,
nonequilibrium conditions exist. As the air continues downstream, the relaxation
length becomes large, and a near-frozen condition may exist at the exit of the

nozzle.

Gas Model

In the preceding work to keep the discussion general, we have not been
explicit as to the particular type of nonequilibrium, nor have we specified the
actual equation of state. Now, to obtain a particular sclution by numerical
methods, we must decide on the gas model. A gas model that is a good approxima-
tion to real air for a moderate range of temperatures, and yet relatively simple,
is a mixture of dissociating oxygen and nondissociating nitrogen. The molecular
vibration is assumed to be at equilibrium, as are the molecular translation and
rotation. The expressions for the thermodynamic and chemical-kinetic properties
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of this simplified air are briefly derived in appendix A. In this derivation,
the contribution of electronic excitations to the internal energy is neglected.
This is equivalent to assuming the electronic partition functions to be constant,
which is valid for the temperature range concerned (T < 8000° K).

The difference of the present air model from the Lighthill ideal dissociat-
ing gas (refs. 25 and 26) is due mainly to the inclusion of the dissociatively
inert nitrogen. The principal approximation made in the Lighthill gas model,
that pp (defined by eq. (A-5)) is constant, is rather good for the range of
temperature where dissociation i1s important. The Lighthill gas model, however,
is not a good approximation for ailr for the present purpose because it has too
high a value of af/ae, which is an important parameter in estimating the non-
equilibrium effects. The use of too high a value of af/ae would lead to an
overestimate of the effects of nonequilibrium.

The simplicity of the present air model, as compared with more complex ones,
is due mainly to the fact that there is only one nonequilibrium process. For the
higher temperature range where dissociation of nitrogen is important, an equally
simple but not as good approximation for air would be a mixture of dissociating
nitrogen and fully dissociated oxygen.

Nozzle Model

The dimensions of the nozzle used in the present computations are shown in
figure IV-2. The nozzle has a conical portion after the throat, followed by a
fourth-degree-polynomial curved portion that matches the slope at the end of the

conical section and has zero slope and curvature at x = 10.35 cm. The conical
section is included because a method of computation for the transonic throat

Notes

I Curved portion at nozzle described by
radius = 0.21256 x - 0.018783 x2 + 000014226 x>+ 0 00003120 x4

2 Throat at x = 0 2352¢m; radius at throat=0.05¢cm
3 Expansion area ratio at exit=387.75

Cone Fourth-degree polynomial - |
I -
13
O
3
2
s 129
@
- 1 1 1 | L 1 1
o kN P 2 3 4 5 6 7 /8
\Throut Axial distance, x,cm Exit

Figure IV-2.- Nozzle used in flow computations.
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region is not available. If the conical section is large enough compared with
the throat region, however, it is reasonable to assume that the flow itself is
conical at the end of such a section. We select a fourth-degree-polynomial
contour so that we can specify that the conical and the curved portions of the
nozzle have matching slopes at their Junction and that the curved portion has
zero slope and curvature a short distance downstream from the nozzle exit. The
selection of the location of the exit is described in the next paragraph. Such
a nozzle may be thought of as representing the core of inviscid flow in a high-
speed wind tunnel when the flow behavior differs (in the inviscid core or in the
viscous layer, or both) from the design condition of uniform exit flow. In
reality, the presence of a thick boundary layer in a wind-tunnel nozzle, such as
the one we are considering, makes it difficult to achieve an exactly uniform flow
in the test section under any condition, equilibrium or otherwise.

Since this nozzle is not ideally designed, that is, its wall is not so
contoured that the exit flow is uniform for a particular initial condition, There
is no assurance that the flow can turn uniformly to a parallel flow at the exit
for any initial condition. Recompression (i.e., deceleration of the flow) may
occur, as indeed it does for the present initial conditions used. This recom-
pression is avoided by arbitrarily taking the nozzle exit to be a short distance
upstream from where the nozzle wall becomes horizontal. We thus select the exit
to be at x = 8 cm.

The numerical method of computation is the well-known method of characteris-
tics. The necessary basic relations for the computation (egs. (III-1)) have
already been developed in chapter ITTI. In finite-difference form, these equa-
tions are (with reference to fig. IV-3)

_ o _ v -1 . _ hCI, \ .
BfAD<PD PA) + (pw )AD(QD QA) + <jMfr pw= sin 8 ot WM/AD Apn = O
(Iv-1a)
- 2 - v- 1 ; _ o _
BfBD(pD - PB) (ow )BD(QD QB) + <jMfr pow2 sin 6 T W - Npp = O
(Iv-11p)
(ap - ap) - <$> Nop = O (Iv-14d)
CD

where single-letter subscripts refer to locations and double-letter subscripts
signify average values, except with A, which is the linear distance between the
two points referred to by the subscripts. Points A, B, and C are locations at
which the values are known. Point D 1is the location at which the flow proper-
ties are to be found. Here o 1is the degree of dissociation of oxygen.
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Figure IV-3.- Characteristics net for nonequilibrium-flow computations.
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5.® omputed array
Initial 3 D
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j of D Nozzie center line

Figure IV-L.- Computation net for points on the nozzle center line, nozzle
wall, and in the interior.
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At the nozzle wall, equation (IV-la) is replaced by 6p = tan™t 6(XD),
where &(x) is the slope of the nozzle wall. At the nozzle center line,
equation (IV-1b) is replaced by 6p = O.

The numerical procedure is as follows (ef. fig. IV-L): The values of
p, 8, w, and a are taken to be known at each point, represented by the solid
dots, in the initial array. We shall call those points the data points. Points
Dy, Do, and points of type Ds constitute the array of points to be computed.
For the nozzle center-line calculation, B; 1is located halfway between data
point C; and the adjacent data point. The values of p, 9, w, and o at B;
are obtained by linear interpolation. DPoint D; 1s located at the intersection
of the nozzle center line and the right-running Mach line from B,. For the
nozzle wall calculation, Ap 1is located halfway between data point Cp and its
adjacent data point, and Dy lies on the intersection of the nozzle wall and the
left-running Mach line from As. The values of p, 6, w, and o at A are again
obtained by linear interpolation. Finally, for a typical calculation that
involves neither -the nozzle wall nor center line, Az is located halfway between
data point Cs and the data point below it. Points of Type Ds are then taken
to lie on the intersection of the streamline from Cs and the left-running Mach
line from As, and Bs at the intersection of the right-running Mach line
through Ds and the straight line connecting Cs with the data point next above
it. The values of 7p, 6, w, o at As and Bs are obtained by linear
interpolation.

For the starting of the integration process, the values of p, 6, w, a for
points D3, Ds, and type Ds are the same as those for points C,, Dp, and
type Ca, respectively. The numerical integration for points of type Ds
involves solving equations (IV-la) and (IV-1b) for pp_ and Opg, then equa-
tions (IV-lc) and (IV-1d) for Da and oDy The neW'vglues for PDy> QDB, WDy s
and ap, are used in recomputing the coefficients in the compatibility relations
and in refining the locations of the points Ds and Bz. The values of p, w, 6,
o for Bs are then reinterpolated, and the values for p, w, 8, a at Dz are
recomputed. The computation process is then repeated. The iteration 1s con-
tinued until the velocity reaches a preassigned accuracy. For errors of
107% percent (between successive iterations) or less in the velocity, it usually
takes four iterations to compute one point. The computations for D, and Do are
egsentially the same except that one less computation is needed because the value
of 0 i1s known at D, and Do. After the entire new array consisting of
points D,;, Ds, and type Ds are computed, the computed array is used as a new
initial array.

There is very little improvement in the accuracy of the computed results
once the number of points in an array exceeds 18. The grid sizes, which are
dependent on the number of data points in each array, are selected to be as small
as necessary to give the desired accuracy for the flow gquantities at the nozzle
exit. The selected number of data points in each array in the actual computation
is roughly 30. The streamwise mesh size for a 30-point array is approximately
0.03 cm at the start of the nonegquilibrium calculation. This mesh size is about
one-half of the corresponding characteristic reaction length T,w. The stream-
wise mesh size becomes larger as the flow proceeds downstream as a result of the
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widening of the nozzle and the increasing of the Mach number. The streamwise
mesh size at the exit 1s approximately 0.1 cm. The mesh size for all four cases
computed (equilibrium and nonequilibrium) is sbout the same.

For frozen flow, equations (IV-l) are immediately applicable; the terms
involving w in equations (IV-la,b, and d4) are simply zero. In the equilibrium
limit, the term containing w in equation (II-ka) combines with the leading term
to yield a quantity Mg2dp/ds. For the equilibrium flow, the compatibility
equations become simply

y - 1 . _
BeAD(pD - pA) + (pw2)AD(6D - GA) + < e pw2 sin é)AD Mpp = O (IV-2a)

v -1 .
Bepp(Pp - pg) = (ew2)gp(6p - 6p) + <M ow2 sin 6 ) Agp =0 (1v-2p)

el BD

and are essentially the same as those for frozen flow except that the Mach number

and the corresponding characteristic directions are based on the equilibrium
speed of sound.

The numerical computation described above was performed on the IBM 7090
computer of the Ames Research Center, NASA. The machine program is coded in
FORTRAN language. Fourteen subroutines are used to facilitate both the machine
program verification and any future modification such as using different gas
models (as long as only one nonequilibrium process is allowed).

The numerical examples computed for the present study are based on a
reservoir condition of T = 9000° K and p = 1000 atmospheres. Four cases were
studied: equilibrium flow and three cases of nonequilibrium flow with the
effective characteristic reaction time Trepp taken as 0.1, 1, and 10 times

the value of Ty given by equation (A—9). The case of equilibrium flow has, of
course, an effective characteristic reaction time of zero.

To obtain the initial conditions, we assume that the gas is in equilibrium
up to the location at which the Mach number My 1s 1.1 and that ahead of this
location the gas behaves like real air. This last assumption gives a starting
condition (i.e., values of p, p, and Mf) corresponding exactly to real air with
the reservoir conditions stated above. For the present computation these start-
ing values of p and p are obtained from the charts prepared by Yoshikawa
(ref. 27), and the corresponding value of o = e 18 computed using equa-
tion (A-L). The initial conditions are thus more realistic than those that
would have been obtained using the simplified air model throughout, since at
temperatures higher than those at the throat the nitrogen is dissociated. The
assumption that the flow upstream of the location of Mg = 1.1 is in equilibrium
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is Justified, since the subsequent computations show that the flow has no
tendency to deviate from the equilibrium curve (fig. IV-5) until downstream of
this point.

LOF Ty oapt - O ({equilibrium)

10 v, (octual nonequilibrium)

o
T

EN
T

Degree of dissociation, a

1 1 1 1 1 | | 1 |
] 2 4 6 8 10 12 14 1 6 18
Axial distance, cm

Figure IV-5.- Degree of dissociation along the nozzle center line in the
transition region for various degrees of nonequilibrium and various
assumed nonequilibrium starting positions.

The flow for the equilibrium condition i1s first computed. For a nonequilib-
rium calculation, the value of the effective characteristic reaction length
Tropp? from the equilibrium flow along the nczzle is then observed. Once

TraeeW becomes moderately long (in the present computations about twice the

streamwise mesh size), the flow is assumed to be in a nonequilibrium condition,
and the computation for nonequilibrium is used for the flow downstream of this
point. To assure that the selected effective starting point for the nonequilib-
rium calculation is a correct one, at least one more case using a starting point
upstream or downstream of it must be computed. The degree of dissociation along
the nozzle center line in the transition region is presented in figure IV-5. As
seen from this figure, for each effective T, there is a certain location ahead
of which the nonequilibrium effect is so small that any point upstream of it can
be used as an effective starting point without serious error in the transition
regilon. The starting point cannot be too far upstream, however, since too high
a reaction rate would make the numerical computation unstable.

The characteristic reaction length T,w for the equilibrium flow and the

actual nonequilibrium flow (effective Ty = 1.07.) is presented in figure IV-6.
As seen from this, the characteristic length T,w 1ncreases rapidly in the
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Figure IV-6.- Characteristic reaction length in the transition region of the
nozzle.
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region immediately after the throat, causing the flow to deviate from equilibrium.
Later T4 w dincreases to values even larger than the physical length of the
nozzle, and the flow becomes nearly frozen shortly past the conical section.

The variation of the flow quantities along the center line are presented in
figures IV-7 through IV-1l. These variations are qualitatively the same as those
from calculations of quasi-one-dimensional flow (refs. 5, 8, and 9). Thus,
gquasi-one-dimensional-flow computations can give an assessment of the effects of
nonequilibrium, at least qualitatively.

Note that while all flow quantities along the center line deviate from the i
equilibrium-flow values, the extent of the deviation depending on the effective
reaction rate, the deviation of the velocity (fig. IV-8) is relatively slight.

This phenomenon may be useful for some approximations. The temperature
(fig. IV-10), on the other hand, deviates considerably from the equilibrium-flow
value, causing the Mach number (fig. IV-11) to deviate correspondingly.
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[¢) | 2 3 4 5 6 7 8
Axial distance, cm

Figure IV-7.- Degree of dissociation along the nozzle center line for various
degrees of nonequilibrium. 4
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Figure IV-9.- Pressure along the nozzle center line at various degrees of
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Figure IV-10.- Temperature along the nozzle center line for various degrees
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32




The gas next to the nozzle wall travels a longer distance than that on the
nozzle center line. Furthermore the flow on the center line expands more rapidly
and hence freezes sooner. It may be conjectured, therefore, that the flow
remains closer to equilibrium at the wall than at the center. If the flow is
significantly out of equilibrium, then, the value of o at the wall should be
lower than that at the center. If the flow is near equilibrium, of course, the
value of o 1is lower at the nozzle center line than that at the wall simply
because the flow along the center line expands more. This is shown to be the

cage in figure IV-T.

The variations of the flow properties across the nozzle-exit plane are
presented in figures IV-12 through IV-16. These figures show that, in general
(except a), the nonuniformities become more pronounced as the effective value
of T, increases, that is, as the flow tends toward the frozen condition.

The velocity, fairly uniform when the flow is in equilibrium.(fig. Iv-13),
stays fairly uniform when the flow is out of equilibrium. Note that, although
o varies across the exit plane (fig. IV-12), the corresponding values of
Z =1 + (a/b.764), which dictates the relative importance of dissociation in the
thermal equation of state, are actually fairly constant. Pressure (fig. IV-1L),
on the other hand, has a deviation from the center to the nozzle wall some
30 percent (when effective Ty = l.OTr) more than the equilibrium case.

We may therefore conjecture that, since we camnot in the design of a nozzle
by the inverse method have all of the exit quantities exactly uniform when the
flow is out of equilibrium, we will attain the over-all best uniformity by taking
the pressure uniform, the streamlines parallel (6 = 0), and the velocity and «
unspecified. We may conjecture, also, that for a nozzle designed to give a
uniform flow at the exit for equilibrium conditions, the pressure and Mach number
may vary significantly from the nozzle center to the wall if the flow turns out
to be nonegquilibrium.
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Figure IV-12.- Variation of degree of Figure IV-13.- Velocity distribution
dissociation across the nozzle- across the nozzle-exit plane.
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Figure IV-15.- Temperature distribution

across the nozzle-exit plane.

In the present case, the correct
nonequilibrium flow (Treff = Tp) is

nearly frozen shortly after it passes
the conical section, which here is a
relatively small portion of the nozzle.
If a longer conical section were pre-
scribed, the flow would be nearly frozen
at the end of the cone. Then one would
compute the conical part by quasi-one-
dimensional flow, which is exact in this
region, and determine the flow in the
rest of the nozzle by a frozen, axisym-
metric computation for a thermally per-
fect gas (for which o and hence =z

are constants). Such calculations are
readily made since the methods for both
the nonequilibrium quasi-one-dimensional
flow and the thermally perfect axisym-
metric flow have already been developed.
Furthermore, if the conical section is
large enough that effective freezing
starts before the end of the conical
section (so that the region in which the

flow is not quasi-one-dimensional is essentially frozen), complete uniformity at
the nozzle exit can be prescribed. This would provide one method of designing an

ideal nozzle for nonequilibrium flow.

Lastly, the useful, approximate, sudden-freeze analysis for noneguilibrium
flow (ref. 6), which was developed for quasi-one-dimensional flow, can be
adopted for axisymmetric flow. This can be done by switching from a computation
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of equilibrium flow to one of frozen flow when appropriate conditions are reached
on each streamline. If freezing occurs after the flow passes the conical portion
of the nozzle, the center line will freeze first because of more rapid expansion
there. Since along each cross section the flow at the center tends to freeze
first, the computation along curve AD (in fig. IV-3) will reach the condition
for sudden freezing sooner than that along CD. This should cause no difficulty,
for one can use an equilibrium-flow computation along BD and CD together with

a frozen-flow computation along AD without incompatability.

Ames Research Center

National Aeronautics and Space Administration
Moffett Field, Calif., Nov. 15, 1962
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APPENDIX A

THERMODYNAMIC AND CHEMICAL-KINETIC PROPERTIES OF A SIMPLIFIED

ATR MODEL

In this section we set down the thermal and caloric equations of state, the
rate equation, and the expressions for the auxiliary properties, such as the
speeds of sound, that appear in the coefficients of the flow equations. We will .
consider only the simplified air model described briefly in chapter IV. In this
gas model the air is assumed to be a mixture of oxygen and nitrogen with only
the oxygen dissoclated. The translation, rotation, and vibration of each con-
stituent are taken to be in equilibrium (i.e., they have a Maxwell-Boltzmann
distribution), and the electronic excitation is assumed negligible. The deriva-
tion of the properties of this gas is straightforward. Only minimum details,
enough to indicate the assumptions involved, will be given since derivations for
more complicated gas models are available (e.g., refs. 22, 28, and 29).

The number density (number of particles per unit mass of gas mixture) for
the constituents in the mixture are

ng = —%
mo(l + a)
n :__l#
Oz 2mq (1 + a)
___&/p
Mo = Emo(l + a)

where o 1is the ratio of the mass of oxygen in atomic form to the total mass of
atomic and molecular oxygen, a 1is the ratio of the mass of nitrogen to the mass
of the oxygen in the mixture, b 1is the ratio of the atomic weight of nitrogen
to that of oxygen, and my 1is the mass of an oxygen atom. The actual values
used for the constants are listed in table I at the end of appendix A.

The assumption that the translation of the molecules has a Maxwell-Boltzmann
distribution permits us to write the thermal equation of state as

ol
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T

where k 1is the Boltzmann constant. Substituting the relation for ng, no,»

ny,, and letting R = [1 + (a/p)1k/[2my(L + a)], and Z =1 + [l + (a/o)17%,
we have

g = ZRT (A1)

The specific internal energy e, with the zero energy of the mixture taken
to be that of the atomic species at absolute zero temperature, is the sum of the
translational, rotational, and vibrational energies of the species (since
electronic excitation is neglected). We thus write

€ ::z:ni(Etranslationi + Erotationi + Evibrationi - Edissociationi)
i

where the subscript 1 takes the values 1, 2, 3 corresponding to the species

0, Oz, Np, respectively. Substituting the values of n; and denoting
Egissociationyi/X by ®p,, We have, for the enthalpy h =e + p/p, with

Etranslation; = (3/2)kT and (assuming rotation fully excited) Erotationy = KT

- a 3 1 ) a )
h = <# + B> <é * 3 z> RT + R {E {(1 - a)EV1b02 + <¥> EVlea}

[l o o]}

where Evibi is given by the relation

K8y exp( -8y /T)
1 - exp(-8y,/T)

EVib 3 =

Here @y; is the characteristic vibrational temperature.

The rate of change of the degree of dissociation o can be obtained by
summing the forward and reverse reaction rates of oxygen in the presence of
atomic oxygen and molecular oxygen and nitrogen. Here the rate equation differs
from equation (7.34) of reference 22 only by the additional term due to the

presence of nitrogen as a catalytic species. The rate equation thus takes the
form

da, 0 [ 1 -a 1la } [ 2pa? }
==__0 g +=——2x + =2k 1 - - —F—~ A
at  Mg(1 + a) kfO 2 Top "2 p e * MKe (1 + a) (43)
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where Mgy 1is the atomic weight of oxygen, the subscripts for kfi denote the
particular catalytic species, and K, 1is the equilibrium constant. The quantity
inside the last bracket is, from the law of mass action, zero when a has its
equilibrium value «,. Thus we have

2 o (T) Bpn N
10% e Dp = <- Tog) (84)
where
pD(T) - Ef_i§§2¥0 K. exp <Fé§2> (A5)

The value of K, can be expressed by means of the partition function. In
terms of temperature, we have

/2 -0 (p.f.)2 @)
2mg ﬂmo#>3 0 > Oey < Do,
= OOy el JF(1 - 2 __ %2
fe Mo \ n® 02 P (p--)o, : P T/ (46)
S

where h 1is the Planck constant and @ro is the characteristic rotational
2

temperature for oxygen. The ratio of the electronic partition functions is
assumed to be constant, consistent with the earlier assumption of neglecting
the contribution of electronic excitation to the internal energy. The value
of this ratio is taken to be 24.42.

We use the same rate constants adopted by Hall (ref. 10). They are

®
Dy N\
kfo = 3.56X10217738/2 oxp <— T?2) , cm®/mole sec (a72)
2
ke =
0. = 3 (a7v)
Ko, o,
kr
SR (a7c)

where O has the value 59,3800 K. The total forward reaction rate constant
DO J

that is, the quantity inside the first bracket of equation (A3), is thus

(3% 1-o la
ke = 5 + + z b> kf02 (a8)
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a)

The reciprocal of the entire quantity multiplying the last bracket of equa-
tion (A3) has the dimensions of time and characterizes the time it takes for the
chemical reaction to reach equilibrium. This guantity, the characteristic
reaction time, will be denoted as 7Ty, that is

= (1 + a)Mp/pke (A9)

There remain now only the frozen speed of sound ap and the equilibrium of
speed of sound a,. These are given by the identities @ef 22)

2 _
ars = (A10)
p~L - hp
hey + hgo
) e
8% = ., — (a11)
P - (hp + ha@ep)

where the subscripts p, p, @ denote partial differentiations, for example,
hy, = (Bh/ap)pja, qep = (8ae/ap)p. Thus they are simply related to the deriva-

tives of h and ae. If we denote the quantity in the right-hand side of equa-
tion (A2) by f(a,T), then h, is simply

S ONRICHRCREHC))

whereas hp and h, are

he = - L <§§\
. 6 \3T/,

=[(-9)2] G+ &),

In a similar manner, if we denote loglps(T)exp(- ™ ] by fo(T), then
d 05

I

Do

Qe = (Bae/ap)p and ey = (Bae/ép)p can be obtained by differentiating
equation (AL) (with the aid of eq. (Al)) as

- . f?KaT/ap)p,a - (1/p)
P[(2 - ae)fae(l - ae)] - £2(3T/d)

b,0

T R e e

I
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and

- 2 - e ) fo -1
°p fal <? {;e(l - ae) 1+ (a/p)] + ae}>

The values of a, and ae for the simplified air model are presented in
figures A-1 and A-2 for temperatures up to 8000° K and for various pressure
levels. The variations of af/ae and Tpae are illustrated in figures A-3
and A-k. The maximum value of af/ae for pure oxygen 1s roughly twice that
for the air model. Pure oxygen, therefore, would have greater nonequilibrium
effects than air, this being due to the lack of nitrogen acting as a diluent.
The characteristic chemical reaction length for pure oxygen, on the other hand,
is several times smaller than that for alr because the nitrogen molecules are

not as efficient a catalytic body for reaction as are oxygen molecules and atoms.
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Figure A-1l.- Equilibrium degree of dissociation versus temperature for
pressure = 0.01, 1.0, and 100 atmospheres (simplified air model).
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Figure A-2.- Equilibrium speed of sound versus temperature for pressure = 0.01,
1.0, and 100 atmospheres (aeo = a, at standard condition = 3.320X10% cm/sec).
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Figure A-3.- Ratio of frozen to equilibrium sonic speed for the simplified
air model and for pure oxygen.
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TABLE I.- PHYSICAL CONSTANTS USED FOR THE GAS MODEL

3.3

0.8755

6.6252x107%7 erg sec
1.380L42x10718 erg/°K
2.66x10723

16 gm/mole

59,380° x

113,260° ¥

2.07° K

2,230° K

3,340° K

i,
e

s,
A S Mty
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APPENDIX B

PRINCIPAL SYMBOLS

mass of oxygen/mass of nitrogen in gas model described in

appendix A
equilibrium sonic speed

frozen sonic speed

ratio of atomic mass of nitrogen to atomic mass of oxygen

specific internal energy

any flow quantity or function

specific enthalpy; also Planck constant
Boltzmann constant

forward reaction rate constant
equilibrium constant

mass of an oxygen atom

Mach number (frozen or equilibrium)
atomic mass of oxygen

particle density of species 1

pressure

nonequilibrium parameter

nonequilibrium parameter associated with the ith
radial distance from the axis of symmetry
streamwise distance

specific entropy

time

temperature

process

L5
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velocity

compressibility factor; for the simplified air model,
-1
1+a<1+2>
b

degree of dissociation of oxygen = mass ratio of atomic oxygen to
total amount of oxygen

M2 -1

slope of the boundary

/

Mach angle = sin~?t \§>

streamline angle

characteristic temperatures for dissociation, rotation, and
vibration, respectively

density of the fluid
characteristic reaction time (see eq. (A9))

rate of change of ¢
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